This chapter focuses on two related topics: warm-up and flexibility training. They’re often discussed together, but they serve different purposes.
A warm-up prepares you for training or competition. Done well, it can improve performance and reduce injury risk.
Flexibility training aims to increase range of motion (ROM) at a joint using different stretching methods.
A warm-up is widely accepted as an essential part of training and competition because it prepares you both mentally and physically. A well-planned warm-up produces physiological changes that support performance, including:
Increased muscle temperature, core temperature, and blood flow
Enhanced neural function and oxygen delivery
Faster muscle contraction and relaxation
Improved strength, power, and reaction time
Lowered joint and muscle resistance
Greater psychological readiness
Warm-up benefits are often grouped into temperature-related and non-temperature-related effects. Both can contribute to better performance, especially when you use active warm-up techniques.
Components of a warm-up
An effective warm-up includes:
General warm-up: Low-intensity activity (e.g., jogging, cycling) that increases heart rate and blood flow while reducing stiffness.
Specific warm-up: Movements that mirror the activity you’re about to perform, such as dynamic stretching or skill rehearsal.
A complete warm-up should:
Progressively increase intensity
Raise muscle and core temperature without causing fatigue
Last 10 6 10 6 20 minutes
End no more than 15 minutes before the main activity
Targeted and structured warm-ups
General and specific warm-ups are both useful, but you can make them more effective by following a structured approach. One widely used model is the RAMP protocol:
Raise: Increase body temperature, HR, blood flow
Activate and mobilize: Emphasize movement patterns, dynamic stretching, and mobility work
Potentiate: Prepare for activity-specific demands with progressively higher intensity (e.g., sprints, jumps)
The RAMP approach supports both short- and long-term performance and can also be built into the training session rather than treated as a separate element.
Flexibility
Flexibility is the amount of movement available at a joint, often measured as range of motion (ROM).
Static flexibility is the range of possible movement about a joint and surrounding muscles during a passive movement. It does not require voluntary muscular activity.
Dynamic flexibility refers to ROM during active movements and generally is greater than static ROM.
Dynamic flexibility is more sport-specific and important for athletic performance.
Static ROM alone does not guarantee normal movement patterns; flexibility must be understood in the context of sport.
Flexibility and performance
Optimal flexibility depends on the type of activity.
More flexibility is not always better athletes must meet the ROM demands of their sport or position.
Insufficient flexibility may lead to injury.
Excessive flexibility without control can also be risky.
Proper development of ROM should consider specific sport demands and movement patterns.
Factors affecting flexibility
1. Joint structure
Determines ROM.
Ball-and-socket joints (shoulder, hip) allow movement in all planes and have the greatest ROM.
Younger people and females tend to be more flexible.
Age-related decreases in flexibility may stem from inactivity or tissue degeneration.
Flexibility can be improved at any age with appropriate training.
3. Muscle and connective tissue
Muscles, tendons, ligaments, joint capsules, and skin can limit ROM.
Elasticity and plasticity of tissues affect stretchability.
Proper stretching can positively affect tissue extensibility, but chronic effects vary.
4. Stretch tolerance
The ability to tolerate discomfort during stretching affects perceived ROM.
A regular stretching program can increase tolerance and result in increased ROM.
5. Neural control
ROM is controlled by the central and peripheral nervous system, not only by structural elements.
Reflexive and conscious muscle activities play a role.
A key training goal is to facilitate greater ROM via neural adaptations.
6. Resistance training
Can improve flexibility if done properly, using full ROM and balanced strength between agonist and antagonist muscles.
Poorly designed programs (e.g. high resistance with limited ROM) may reduce flexibility.
7. Muscle bulk
Excess muscle mass (e.g. large biceps or delts) may impede joint movement.
Strength and conditioning coaches must consider how hypertrophy affects flexibility needs.
8. Activity level
Active people tend to be more flexible.
Activity alone doesn’t ensure flexibility unless ROM is addressed directly through stretching.
Frequency, duration, and intensity of stretching
Both static and PNF (proprioceptive neuromuscular facilitation) stretching can improve ROM.
Stretching effects are transient unless performed regularly.
Long-lasting gains require a dedicated flexibility program (e.g., 2x/week for 5+ weeks).
Static stretches:
15 6 10 6 30 seconds is optimal.
Stretches >30 seconds can be more effective but may have diminishing returns.
Perform at the point of mild discomfort not pain.
Include a full-body warm-up to increase muscle temp before stretching.
When should an athlete stretch?
Stretching is recommended:
After practice or competition (to take advantage of elevated temperature and reduce soreness).
As a separate session (if greater flexibility gains are needed).
Before sessions, but only after a general warm-up and when flexibility is a performance requirement.
Prolonged static holds (longer than 60 seconds per muscle) before power or
speed work can acutely reduce performance. A dynamic warm-up should be
used prior to these sessions, while longer static or proprioceptive
neuromuscular facilitation (PNF) stretching is best saved for post-training or
separate sessions.
Proprioceptors and stretching
Stretching activates two key sensory receptors:
Muscle spindles: Detect changes in muscle length and trigger contraction
Golgi tendon organs (GTOs): Detect tension and trigger relaxation
Slow, controlled stretching helps minimize activation of the muscle spindle reflex while encouraging GTO-mediated relaxation.
Types of stretching
Static stretch
Static stretching involves slowly moving into a position and holding it for 15 6 10 6 30 seconds. It’s easy to learn and generally safe, which makes it appropriate for most athletes. Static stretching should not be painful and should not cause loss of ROM if performed properly.
Ballistic stretch
Ballistic stretching uses bouncing movements that activate the stretch reflex. While it can increase ROM, it carries a higher risk of injury and should be used with caution.
Dynamic stretch
Dynamic stretching uses controlled, sport-specific movements that gradually increase ROM. Examples include walking lunges or sprint drills. Dynamic stretching is ideal for warm-ups because it closely matches the movement demands of sport.
Each of these involves passive stretching with partner resistance and progressive movement into a deeper ROM through isometric or concentric muscle actions.
Sign up for free to take 15 quiz questions on this topic