The sports medicine team provides health care services with athlete needs and concerns as the primary focus. Key members and roles include:
Team physician: Provides medical care and oversees the rehabilitation process. May be a medical doctor (MD) or doctor of osteopathy (DO), with specialization in various fields. Responsible for medical diagnosis, return-to-play decisions, and coordinating care.
Athletic trainer (ATC): Responsible for day-to-day health care, injury evaluation, therapeutic exercise, and coordination with other professionals. Typically works in schools, clinics, or professional teams.
Physical therapist (PT): Specializes in reducing pain and restoring function. May be board-certified in sports (SCS). Works in clinics or professional settings, assisting with rehabilitation strategies.
Strength and conditioning professional: Focuses on strength, power, and performance enhancement. Plays a critical role in communication and reconditioning program design.
Exercise physiologist: Provides expertise in exercise prescription based on metabolism and healing response.
Nutritionist: Helps manage the healing process through proper nutrition. May be a registered dietitian (RD).
Psychiatrist/psychologist: Supports mental health and coping strategies for injured athletes.
Macrotrauma: A sudden, acute injury caused by a specific overload event (e.g., fall, collision). Examples include:
Fracture: Break in the bone (can be open or closed, displaced or nondisplaced).
Dislocation: Complete displacement of joint surfaces.
Subluxation: Partial displacement of joint surfaces.
Sprain: Injury to ligaments; graded as:
First degree: Minimal instability.
Second degree: Partial tear with minor instability.
Third degree: Complete tear with joint instability.
Contusion: Bruise, caused by direct trauma and blood accumulation.
Strain: Injury to muscle or tendon; graded as:
First degree: Partial tear, painful but strong.
Second degree: Partial tear, weak and painful.
Third degree: Complete tear, very weak and painless.
Microtrauma: Chronic or overuse injuries caused by repetitive stress without sufficient recovery. Contributing factors include:
Training errors (volume, technique, surface)
Poor motor control or biomechanics
Skeletal misalignment or flexibility issues
Common injuries: Tendonitis and stress fractures
Includes:
Injury date and diagnosis (e.g., ACL reconstruction)
Clearance for specific exercises (e.g., stationary bike, single-leg hip)
Contraindications (e.g., leg extensions, plyometrics)
Do not overstress healing tissue: Progress must respect the body’s natural recovery time and limits.
Fulfill specific criteria before progressing: Athletes must meet readiness benchmarks before moving to more advanced rehab stages.
Use evidence-based protocols: Programs should reflect current clinical and scientific findings.
Customize to individual needs: Consider the athlete’s sport, position, and specific injury for optimal recovery.
Use a team-based approach: Effective rehab requires coordination among all members of the sports medicine team.
Ongoing communication is vital between athletic trainers, physicians, therapists, psychologists, nutritionists, and strength and conditioning coaches.
Weekly meetings allow for review of injury status, exercise updates, and any necessary restrictions or program adjustments.
Understanding indications (appropriate treatments/exercises) and contraindications (activities that may harm recovery) is essential for safe progression.
Example:
Indication: Lateral shoulder strengthening post-dislocation.
Contraindication: Overhead pressing for an athlete with shoulder instability.
1. Inflammatory response phase
Initial reaction to injury (pain, swelling, redness)
Duration: ~2–3 days post-injury
Key events:
Increased inflammatory cells
Decreased collagen synthesis
Edema restricts tissue function
Goal: Prevent disruption and allow phagocytosis (clean-up)
2. Fibroblastic repair phase
Begins after inflammation ends; may last up to 2 months
Key events:
Collagen fiber production increases
Decrease in inflammatory cells
Weak collagen laid down
Goal: Prevent atrophy, promote new tissue formation
Caution: Too much or too little stress can hinder healing
3. Maturation–remodeling phase
Tissue transitions to stronger Type I collagen
Duration: Several months to years
Key events:
Proper fiber alignment
Increased tissue strength
Goal: Optimize tissue function, safely return to activity
Focus: Progressive overload with sport-specific demands
| Phase | Key characteristics | 
| Inflammatory response | Pain, swelling, redness; ↑ inflammatory cells | 
| Fibroblastic repair | Collagen production; ↓ inflammation | 
| Maturation-remodeling | Proper fiber alignment; ↑ tissue strength | 
Heal tissues without overstressing them.
Meet criteria to progress from one phase to the next.
Use clinical research to guide program design.
Collaborate with all professionals on the sports medicine team.
Prepare athlete to return safely and effectively to full activity.
General considerations:
Goal: Restore strength, mobility, and function without reinjury.
Programs should match the healing phase and injury location.
Choose exercises that avoid aggravating injured structures.
Inflammatory phase strategies:
Goals: Protect tissue, reduce inflammation, and avoid pain.
Techniques:
Passive modalities (ice, compression, elevation, etc.)
Avoid exercise that stresses the injury site
If approved, gentle isometric contractions may be introduced
Fibroblastic repair phase strategies:
Goals: Prevent muscle atrophy, restore neuromuscular control
Exercises:
Isometrics: Submaximal contractions to maintain function
Isotonics: Light resistance, progress gradually
Cardiovascular work for uninvolved limbs
Active ROM and isolated movements proximal/distal to injury
Avoid multi-joint or joint-specific overloading
Maturation–remodeling phase strategies:
Goals: Increase strength, realign fibers, prepare for return to sport
Exercises:
Progressive overload with advanced sport-specific drills
Eccentric and concentric exercises to stress new tissue
Neuromuscular control drills (e.g., balance boards, visual deprivation)
Return-to-play testing based on functional benchmarks
Neuromuscular control:
Critical for injury prevention and performance
Exercises include:
Mini trampolines, stability balls, uneven surfaces
Progressions with eyes closed to remove visual reliance
Activities like squats/push-ups on unstable ground
Functional training must reflect sport-specific demands. Movements should mirror joint angles, velocities, and force outputs of the sport.
Progress from:
Basic balance and strength exercises (e.g., static holds, single-leg stance)
To dynamic, sport-specific movements (e.g., sprinting, plyos, change of direction)
Example: A basketball player with an ankle sprain progresses from walking drills to full sprints and sport-specific movement.
Closed kinetic chain exercises: Distal segment is fixed (e.g., squats, push-ups); often more functional and joint-stabilizing.
Open kinetic chain exercises: Distal segment is free (e.g., leg extension); useful for isolated muscle strengthening.
Most sport movements combine both (e.g., sprinting involves open and closed elements).
| Phase | Primary goals | 
| Inflammatory response | Protect tissue, prevent new damage, no active movement of injured area | 
| Fibroblastic repair | Prevent atrophy, maintain function, use light isometrics, proprioceptive drills | 
| Maturation–remodeling | Optimize function, progressively load tissue, include joint-specific & velocity drills | 
Follow the same structure as healthy athletes (progressive overload, SAID principle)
Popular resistance models:
DeLorme: Progressive increase (50% → 75% → 100% 10RM)
Oxford: Reverse progression (100% → 75% → 50%)
DAPRE (Daily Adjustable Progressive Resistance Exercise):
Consider sport-specific metabolic demands:
Marathon runner = endurance-based recovery
Olympic lifter = power and strength emphasis
Use modalities like:
Upper body ergometers
Deep water running
Stationary cycling, elliptical
Modify for uninjured limbs during recovery phase
| Phase of healing | Design variables | Marathon runner | Olympic lifter | 
| Inflammatory response phase | Goals/exercises | No quad activity, rest, maintain strength in other areas | Same as runner, maintain upper body and power | 
| Fibroblastic repair phase | Goals/exercises | Start isometrics, add pain-free isotonic exercises, introduce aerobic work | Begin quad strengthening, consult with sports med team, continue upper body/power work | 
| Sets/reps/intensity | 2–3 sets, 15–20 reps, <50% 1RM | 3–4 sets, 8–10 reps, <50% 1RM | |
| Maturation–remodeling phase | Goals/exercises | Start sport-specific drills, gradually increase load and ROM | Add dynamic lifts (e.g., squats, RDLs), progress movement to match sport | 
| Sets/reps/intensity | 2–3 sets, 15–20 reps, increase to >75% 1RM | 3–4 sets, 8–10 reps, increase to maximal intensity (>75% 1RM) | 
Previous injury is the strongest predictor of future injury.
Programs must be:
Sport-specific
Focused on neuromuscular control during landing, jumping, and cutting
Include single-leg strength work
Sign up for free to take 15 quiz questions on this topic